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THE DIFFRACTION OF PLANE GRAVITATIONAL WAVES BY THE EDGE OF AN ICE COVER* 

R.V. GGL'DSHTEIN and A.V. NANCHENKO 

The diffraction of plane surface gravitational waves by the edge of an 
ice cover lying on the surface of an incompressible fluid of infinitely 
great depth is considered. The ice cover is simulated by a thin elastic 
plate. The wave reflection and transmission coefficients are determined 
when it interacts with the ice cover. A wave field is constructed in 
the fluid under the conditions that a periodic lumped force and a lumped 
moment act on the edge of the ice cover. It is shown that as the 
incident wavelength increases the reflection coefficient tends to zero 
and the transmission coefficient tends to unity. 

Problems of hydroacoustic wave scattering by inhomogeneities of a thin elastic plate 
covering the whole surface of a fluid were investigated in /l-4/. The problem of wave dif- 
fraction by the edge of ice cover lying on a stratified fluid surface, as simulated by a solid 
wing has been examined in /5/. The diffraction of surface waves from the junction of two ice 
fields of different thickness was investigated by the Peters method in /6/. It was shown that 
as the incident wavelength increases the reflection coefficient tends to zero and the trans- 
mission coefficient tends to unity. 

1. Let us consider the potential motion of a heavy incompressible fluid of great depth 
situated under an ice cover for x>O. The fluid particle velocity potential is denoted by 
cp. 

In the stationary case the ice cover is submerged in the fluid at a depth h that can be 
determined from Archimedes law: R = h,&pw, where pi and pu, are the densities of the ice and 
the fluid, and h, is the thickness of the ice. We draw the horizontal x axis along the lower 
surface of the ice cover in the rest state. We draw the y axis vertically downward Fig.1). 
Let 11 be the deflection of the fluid free surface from the horizontal equilibrium position. 

We introduce the dimensionless variables (marked with primes) 

cp' = q(al/&l, 5' = xh?, y' = yh?, t’ = tl/gTh 

where a is the incident wave amplitude, and h divided by 2n is the incident wave length. 

-h 

a X ‘pax + ‘PI/v = 0; .z < 0, -A < y; x > 0, 0 < y, A E hh-’ (I.11 

p = pa = const;x < 0,y = -A (1.2) 

Y rlc = 'PUT . x<O, y=-A;x>O,y=O (1.3) 

p = Pi -t Pa; X > 0, Y = 0 (1.4) 

Fig.1 
cp+o;y+oo (1.5) 

Here p is the pressure in the fluid, pa is atmospheric pressure, and pi is the additional 
pressure due to the ice cover. 

Ne write the Cauchy-Lagrange integral in the form 

Eqt - Ey -t pi(p,gh) + A = f (t), E G ah-’ (1.6) 

The complete system of equations with linearized 
boundary conditions that describes the process under 
consideration has the following form in dimensionless 
variables (the primes are henceforth omitted) 

Setting f(t) -pa /(p&4 + A, and using (1.6), we can rewrite the boundary conditions 
(1.2) and (1.3) in the form 

cptt - TV = 0, y = -A, x< 0 (1.7) 

The additional pressure induced by the ice cover in the fluid is represented in the form 
pi = p,, + pihog, where pa is the pressure due to the elasticity of the ice. The pressure pe 
can be determined from the equation of the vibrations of a thin elastic plate /7/ by which the 
ice cover is simulated in this problem 
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P” 
- = - EAVjtt - FD~._~, D = 

EhJ 

P&h 12(1-~3e)pmgh’ 
(1.8) 

Here E and Y is Young's modulus and Poisson's ratio for ice. 
Using (1.8), the boundary conditions (1.3) and (1.4) can be written in the form 

mtt--(py-A(~ytt-D~~xrxx=O; x>'J Y=O (1.9) 

Henceforth, waves will be considered that are long compared with the thickness of the 
ice: consequently we set A = 0. It is assumed that the dependence of all the functions on 
time is expressed in dimensionless form by the factor cit. Taking the above into account, as 
well as relationships (1.7) and (1.9), system (l.l)-(1.5) can be written in the form 

vrx + VYU = o;--cy;<x<~~Y>o (1.10) 

cp+c+3y=o; -‘x<x<o, y=o (1.11) 

(P+‘P~+Dv,,,,,=~;O<X<~,Y=-O (1.12) 

r++o;y+x, (1.13) 

As will be seen subsequently, the exact solution of problem (l.lO)-(1.13) is not unique 
and depends on the four constants A*, k,. 

Three problems are examined: 
a) the diffraction of plane waves by the edge of an ice cover; the wave arrives from the 

pure water side (x< 0); 
b) the diffraction of plane waves by the edge of ice cover; the wave arrives from the 

fluid beneath the ice (x> 0); 
c) determination of the fluid motion if periodic concentrated forces and moments act on 

the edge of the ice cover. 
In dimensionless form the concentrated forces and moments are defined by the following 

formulas /l/ 
f = --icPllrxr, m = --icp,, 

We take as characteristic quantities of the forces and moments 

D, = 
Eh& 

12 (1 - 9) J.3 ’ 
D, = %‘a 

12 (1 - vy h2 

The constants 

R 112 and T,,, are the wave reflection and transmission coefficients. 
The constants A*. k, in problem c) are determined from the conditions 

A*:, k* in problems a) and b) are determined from the conditions 

cp --, Rle-l;(i.x+v) , z-$-m; (~--fT,e’~~~‘, z+-.Y, 

f+ -iiF’, m--t -iM’; z- +O, y-t0 

(1.14) 

(1.15) 

(1.16) 

(1.17) 
(1.18) 

M' and F’ are related to the dimensional quantities of the effective forces and moments by 
the formulas M = --iMID, and F = --iF’D,. 

2. We will seek the solution of the problems under consideration in the form 

(2.1) 

The solution in the form (2.1) satisfies (1.10) and condition (1.13) identically. Con- 
sequently, there are no sources and sinks in the whole domain of motion, and the integral 
(2.1) should converge at each point of the half-space y>O. We hence have 

p (k) ( 0 (k-*), 1 k I+ cm (2.2) 
The contour of integration in (2.1) can be deformed into the domain of analyticity of 
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the function p(k) in the plane k. Substituting (2.1) into (1.11) and (1.12), we obtain 

s P (4 (1 - I k I) eikXdk=O; x<O, Imk<O (2.3) 
L1 

'j P(k)(i -lkl(l fDk’))dbXdk =O; s>O, Imk>O 
IL 

(2.4) 

The curves L, and L, lie, respectively, in the lower and upper half-planes k. Note that 

if the limits of integration in (2.3) and (2.4) were to remain equal to *was in (2.1), then 
integrals (2.3) and (2.4) would diverge in the ordinary sense. To obtain (2.3), the contour 
of integration in (2.1) must first be deformed in the lower k half-plane in such a manner 
that the ends of L, would approach an infinitely remote point in directions different from 
the real axis, and then cp would be substituted into the boundary condition (1.11). An 

analogous procedure must be carried out in the upper k half-plane to obtain (2.4). 
When going over to the complex k plane the function Ik 1 must be determined. Let us 

define it as the limit as e--+0 for functions x* that are analytic in a two-sheeted Riemann 
surface: x+ = l,‘ka + ie2, where the sheet of the Riemann surface is selected on which Rex+> 
0 on the real axis. Let us use the notation lk[+ = limx+ as E--f 0. 

functions Ik I* can take different values in the plane k, however, they 
on the real axis. 

We note that the 
certainly equal Jk 1 

Fig.2 Fig.3 

Eqs.(2.3) and (2.4) will be satisfied identically if it is assumed that 

p(k)(lk I*---)=@_(k), p(k)(Ik I*(k4+D-1)-D-1)=@+(k) 

where @+ and a_ are functions analytic in the upper and lower k half-planes, respectively. 
At infinity @* can have singularities of finite-order pole type. On the real k axis 

Q+/Q_ = [ 1 k I (k4 + D-‘) - D-II/( ( k I - 1) (2.5) 

To find a+ and a_. we factorize the functions on the right side of (2.5). 
The functions G,* = x* (x* - I), G,* = x*’ (x k4 + Dml)-DD-‘x* have 4 and 12 roots, respect- 

ively, in the complex .k plane. There is a root of opposite sign for each root. Each of the 
functions Gi+ has roots k = +tee*tinir, that lie on slits of the Riemann surface and will 
henceforth not be considered. 

To determine x+ we split the k plane as shown in Fig.2, and to determine x_ we split 
it as shown in Fig.3. By using the Routh-Hurwitz criterion the location of the roots 
in the k plane can easily be established as 

Gi* 
E - 0. Namely, G1+ has two roots fkc+,, close 

to &I and lying in the second and fourth quadrants, while G, has two roots -tk,_,, close to 

+I and lying in the first and third quadrants. The equality k,*,l =I is satisfied for 

t‘ := 0, The function G,, has the roots fk,,,, in the second and fourth quadrants on the 

sheet under consideration and taking the real values +-k,,, for E = 0. and the roots 

fk,,, zr H,,, 3, whose location is displayed in Fig.2. On the sheet under 

function G,_ has roots +k,_,, lying in the first and third quadrants 

values &k,,, at k =7 0 and the roots fll,~_,~, --12_,s whose location is +I. 

We note that as D-t0 

k 2,1 + 17 kg_,, -+ D-leini*, kz.-, 3 + - kw. a 

consideration the 

and taking on the real 

displayed in Fig.3. 
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We introduce the function 

In the limiting case E = 0 the functions gik have no zeros on the sheet under con- 
sideration, are bounded and tend to unity at infinity. These functions can be factorized as 
follows /a/ 

Here &, g& are functions analytic, respectively, in the upper and lower k half-planes. 
According to the Sokhotskii theorem, we have on the real axis 

g$(k)=exp [-&& 1 wdh]G(k) 
--m 

G(k) = JT/gi* (k), k = Re k 31 i0 

It follows from (2.6) that 

(2.7) 

(2.8) 

Let us examine the limiting case D-+0. Substituting the asymptotic value of the roots 
into the definition of gii we obtain that glf+gzf. as D+O and, therefore 

g&-g&* D-+0. 

We rewrite (2.5) in the form 

(2.9) 

n& = k f k,,, 1, I&$ = (k f k,,, ,)(k T kst, a) (k J kz+. s) n;L_ = k 31 h-, 1 

n$ = (k 31 k-,1) (k i &,a) tk t- ks) 

It follows from (2.2) and (2.9) that F, are analytic in the whole plane k and the con- 
dition P'* &0(k) is satisfied as ik I---fm. According to Liouville's theorem /9/, the 
functions F* are first-order polynomials 

F, G A, (k - k,), F_ = A_ (k - k_) 

It follows from (2.1) and the first definition of a* that the solution of system (l.lO)- 
(1.13) can be written in the form 

I - 
cp= 2ni -S[ F+)kl,exp(-lkl+v) + F-lkl-exp(--\kl-v) 3 exp (iks) dk 

-0D “:+“z;g:+Gt qq-gf_g, 
(2.10) 

Formula i2.10) determines the continuous function 'p that is bounded in the domain 

XE(---m, cc), Y>O and depends on the four constants 4, k,. 

3. To analyse the solution (2.10) and determine the constants A*, k* from the con- 
ditions (1.14)-(l-18), we deform the contour of integration in (2.10) for x<O into the 
curve L,, and for x>O into the curve E,. Taking the residues at the singularities of 
the integrands, the integrals on L, and L, can be reduced to integrals over the imaginary 
half-axes, and (2.12) can be reduced to the form 

x < 0, 'P = -F, (1) x+- (1) exp (ix - Y) (3.1) 
F_ (--1) x--(-i) exp (---ix - y) - I_ 

z>O, '~"-F~(--~-,~)a~'exp[k,-,lX-ix--)l+ 
F_ (k,,3a,-exp [k,-,l@ - Y)I - [P+(~,z) + az+ + 

F- (- IE2+,2) %-lexp [&+,z(- ix - Y)I + [P+@-,z) CG+ -t F_k,)~lx 
exp[kzl,z (iz-- Y)I + 1, 

(3.2) 



Here 

a,* = xrt+ G k3-,I) [Oh-. I - k, 3) (4... I - &+a) @3-. I - ka) @Y-, I - b+, 3)1-l 
%* = x*+ (- kc,+.31 W3-,, -. h+.a) (k.3 - .%+a) (La - k3+.3) @3+.3 - k3+,W 
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(3.3) 

%* = x++ (La) %+,a - b-,1) &-.a - &+.a) (&,-,a - 4-,s) (&,a - ka+,Ws 
x** = i2Yx%/cg&n&) 

-‘- F+x+- + F-x-- I-=& 1 k= - i 
[(k - l)eku + (k + 1) e-ku] eikXdk 

0 

(k(Dk” +I) +l)cku]eikXdk 

We determine the concentrated forces and moments acting on the edge of the ice cover 
from (3.2) 

nx,(y = 0,~ = + 0) = A+r,+ + A+k,r,+ + A-r,- + A-k-r,- 

(Psx.r (y = 0,~ = + 0) = A+pl+ + A+k+pa+ + -4-p; + -U-pa- 

rIf = k:_, ,a,* + ki+,Saaf + ki-.-,a3f + K,* 

r,f = ki-,Ia,* + ki+,&f - ki-,3%* - KS* 

pl* = - S [t ki-. laa,* + ki+, acca* - ki-, aa,* - %*I 
pa* = - i [ki-,,a,* + kt+,,a,* + ki-.2a3* + &*I 

(3.4) 

(3.5) 

im 

KS=& 5 , k”J*dk J* = - 
2x*+ 

k’(Dk4 + 1) - 1 
0 

Let Us consider problems a and b. We have from (1.14), (1.15), (3.1) and (3.2) 

k- = B-,x, A_ = - [(I + ka_,l) x_-(- I)]’ (problem a) 

RI = - A, (1 - k,) x+- (I), T, = A+ (k2-,I + k,) aI’ 

k_ = -1, A_ = [(l + k,_,,) a,-l-1 (problem b) 

& = A+ (k,_,, + k,) al+, T, = -A+ (1 --k,) x+- (1) 

(3.6) 

The constants A+, k, are found from (1.16) and (3.4) 

A+ = (pars+ - r3pz+) (rl+Pa+ - ,%+rz+)’ 

k, = (r1+p3 - p1+r3) (raps+ - Pars+)-’ 

r3 G A-r,- + A-k-r,-, p3 = A-p,- + A-k-P*- 

(3.7) 

We will investigate the asymptotic form of formulas (3.6) and (3.7) in the limit case 
D --, 0, which corresponds to considering waves of very long wavelength. Using the asymptotic 
form of the roots k,_,, and the limiting relationship (2.9) we have a,++ al-,J++ J-, from 
(3.3) and (3.5), and consequently, r,++rj-,pj++pj- as D+O. In the limit D-t0 we 
obtain from (1.16) and (3.4) 

k+-+ 1, A+-+ -A_ (problem a) A+-+ A_, k++ -1 (problem b) 

Substituting these values into (3.6), we have R,V,-+O, T1,,-+l. This means that the 
presence of an ice cover on a fluid surface does not influence the propagation of very long 
waves. 

Let us consider problem c. We have from (1.17), (3.1) and (3.2) 

A_ = 0, R, = A+ (k,_, 1 + k,) a,+, T3 = -A+ (1 - k+) X-' (1) 

The constants A,, k, are found from (1.18) and (3.4) and are determined bv (3.7) in 
which we must set r3 L Iif< , 1~3 SE F’. 

The authors are grateful to A. G. Kulikovskii and L. I. Slepyan for discussing 
of this research and for useful remarks. 

the results 
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HIGH-FREQUENCY ASYMPTOTICS OF ACOUSTIC PRESSURE FOR 
BOUNDED WAVE BEAN SCATTERING BY AN ELASTIC SPHERE* 

A.P. PODDUBNYAK 

Asymptotic high-freqeuncy estimates are obtained for the amplitudes of 
specular and non-specular reflections with extraction of the contribution 
of sound reradiation into the surrounding medium by Rayleigh type 
surface elastic waves. The conditions are found that govern the 
magnification of scattering in the opposite direction. The theoretical 
explanation of the book reflection effect /l/ for bounded sound beam 
incidence on the plane interface of a fluid-elastic solid is given by 
many authors in different situations (/12/, say). As for non-specular 
reflection of a plane sound wave by bounded elastic bodies (plates, 
cylinders, rods, and shells enclosed in a screen), studied most 
thoroughly in /3-g/, this effect is a consequence of satisfying the 
space-time resonance conditions between the incident acoustic wave and 
the normal surface waves excited in an elastic solid under total internal 
reflection. 

It is interesting to clarify and describe the book reflection of a bounded sound beam 
incident on the curvilinear interface between two media. Selection of the contributions of 
surface waves in the echo signal from elastic cylinders was carried out experimentally /lo, 
ll/ by sounding a narrow part of an object surface by a pencil beam near the critical angles 
of surface acoustic wave excitation. An analytic description of such a process was given in 
/12/ for analogous wave excitation conditions in the case of spherical and cylindrical elastic 
reflectors. However, the echo signals reradiated by the surface waves were only examined in 
the domain of the geometric shadow of the objects. Non-specular reflection in the reverse 
direction directly from the sounded section of the interfacial boundary without preliminary 
residency in the shadow domain was not analysed. 

1. Let a sound beam, whose effective transverse section near the interface of two media 
is represented as a narrow circular ring of width vi, impinge on an elastic object of 
spherical shape that is in an ideal compressible fluid. The acoustic pressure of the 
incident beam is expressed by the formula 
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